SOLUTION OF A BOUNDARY-VALUE PROBLEM
FOR THE GENERALIZED DIFFUSION EQUATION

V. N. Chigarev and I. M. Fedotkin UDC 532.52; 532.72

The boundary-value problem is solved for the complete diffusion equation and then for the
same equation with a chemical reaction taken into account, for the case of a liquid flow for
which the width and length are much larger than the thickness.

The problem of diffusion in a thin liquid layer in laminar flow around a plate with a length and width
much larger than the layer thickness was solved in {1-4], but under various assumptions, used to simplify
the basic diffusion equation
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These solutions were found for the particular cases in which this equation does not contain the terms cor-
responding to local, convective, or molecular diffusion. As a consequence, the solutions of the boundary-
value problems for Eq. (1) for various initial and boundary conditions suffered from a loss of completeness.
It is therefore a matter of practical interest to seek an effective method for solving such problems for Eq.
(1) in its complete form. Below we take up one of these problems, which is solved by the method of a com-
plex two-dimensional Fourier transformation with infinite integration limits [5-7]. The problem involves
seeking the function C (t, x, y) which determines the concentration of particles of the material diffusing in
a liquid flow of thickness ¢ and of width and length much larger than §. The initial condition is C{t, x,y) |t=0

= C(x, y) and the boundary conditions are
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The flow velocity is assumed known, the velocity components vx and vy are given and are independent
of the coordinates, and the diffusion is assumed plane-parallel, i.e., independent of the coordinate z
(Fig. 1).

In this solution method, Eq. (1) is subjected to a Fourier transformation with respecttotwovariables,
in our case, the coordinates x and y; in this manner the partial differential equation can be reduced to an
ordinary differential equation for the transforms. If is a simpler matter to solve the latter type of equation
[56-7]. Under the assumption that the unknown function C (t, x, y) satisfies Dirichlet conditions on the

intervals (—«, ) along the x and y axes, we can write the two-dimensional
transform of this function as
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//j X We can write the function itself in terms of the transform:
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Fig. 1. Flow diagram.
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Accordingly, we find, for example,

—=——exp L {{x + ny) dxdy
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Multiplying (1) term by term by 1/27 exp i (£x + ny) and evaluating the double integrals of all terms in (1),
as in the preceding examples, we find
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In evaluating the integrals like those in (4)-(6) we used the boundary conditions specified in the for-
mulation of the problem.
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Separating variables in Eq. (7), we find
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where C; and C; are arbitrary constants. To determine the constant C; we use the initial condition. Since
C(t, X, N lt=9 = C(x, y), then the Fourier transform of the initial condition becomes, according to (2},
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Substituting this latter equation into (8) we find, att =0, C(¢, n) = Cy; then the final expression for the
solution of differential equation (7) is

Ctt, & W="C( mexp{—[D(E +n)—i@L+o,ml (10)

We find the solution of the Boundary—value problem with which we are concerned here, according fo (3), on
the basis of this result for C(t, &, n):

C(t, x, y)=

. j jca & mexpl—i (L -+ ny)l dudy. (1)
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Let us apply these results to a concrete example. We assume C(t, x, y)lt=¢ = exp [—Ixl + ly})] to be
a function which satisfies both the Dirichlet conditions and the boundary conditions at infinity. Then from
(9) we find

E
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where
5 exp (— x) exp ifxdx = .f exp [— [x]] (cos Lx + i sinLx) dx
=2 f exp (— [x]) cos Exdx 4+ i j exp (— |x|) sin {xdx
0 —o0

=2 j exp (— x) cos [xdx,
]

since the second integral of the odd function with respect to the symmetric interval vanishes.

of the integral we find

8

2 exp (— x) ({ sin §x — cos Ex)
142

co: 2

o T4+

2

exp (— x)cos Exdx =

[N

Evaluating the outer integral in (12) we find

S exp (— ) cosnydy -+ i § exp(—lyi) sinnady = 2 | exp(—y) cos nydy.
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The last integral is [8]
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Then the expression for C(t, &, n) becomes, according to (10), (12)-(14),
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Using the transform and Eq. (11) we find the solution of the boundary-value problem to be-
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This solution can be writien in a form more convenient for calculations:
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For the rest
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Using properties of the integrals of even and odd functions, we can convert the inner integral in (17) (which

we denote by I) to

% o—DEt
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To evaluate this integral approximately we replace the exponential expression by the first ferms in the

corresponding power-series expansion, finding

¢ cos(x—uv )df = = TS vxt—;x ]
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For the outer integral, L, we find, analogously,
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Taking into account the "symmetry" of the unknown solution, we write
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We now consider the case in which some chemical reaction causes an addition or loss of diffusing
particles; this process is occurring simultaneously with the molecular diffusion and the convective mass
transfer. As was shown in [3], if we take this addition or loss of particles into account on the basis of the
mass balance, we find a complication of Eq. (1):
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where k is some constant which is a measure of the reaction rate and n is a natural number.

To show that in this case this problem, with the same initial and boundary conditions, can be solved
effectively by means of a double exponential Fourier transformation, we set n =1 to simplify the calcula-
tions., Multiplying (19) term by term by 1 /27 expi(fx + 5y) and integrating over x and y, over the interval
(—o, «), and using

Cexp i ({x + ny) dxdy,

jr—s8

as above, we find

C D@4+ k— ik oI C=0. (20)

The general solution of this latter equation is
C(t, ¢, m)=Coexp{— D +1) +k—ilv,l+omili} 2n

Since, according to one of our conditions, the initial distribution of material in the flow is a function of the
coordinates, C(t, X, y)lf=4 = C(x, y), we have C_O =C(Z, 1), and the solution of Eq. (20) can be written
finally as

Cit, & W =C nexp{—ID@+m)+k—i(l+om (22)

We find the solution of Eq. (19), on the other hand, which satisfies the initial and boundary conditions to be
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If we consider a particular boundary-value problem for Eq. (19), with the initial condition C (t, %, ¥)li=
= C(x, y) and the boundary conditions
ac
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and if we set C(x, y) = exp [—(ixl| +1yD], as in the example above, then Egs. (12)-(14) remain valid, as is
easily shown. However, the equation for C(t, ¢, n) becomes

5]
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Accordingly, we find an equation like (17) for the desired function:
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Using the same approximate values for the integrals I, and I, we find
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We see from this equation that when a chemical reaction, proceeding at a rate characterized by the constant

k and associated with the absorption of diffusing material, occurs in the flow, the amount of material in the
flow is smaller by a factor of exp kt than in a flow in which no reaction occurs.
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